Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis
نویسندگان
چکیده
WRKY transcription factors (TFs) have been mainly associated with plant defense, but recent studies have suggested additional roles in the regulation of other physiological processes. Here, we explored the possible contribution of two related group III WRKY TFs, WRKY70 and WRKY54, to osmotic stress tolerance. These TFs are positive regulators of plant defense, and co-operate as negative regulators of salicylic acid (SA) biosynthesis and senescence. We employed single and double mutants of wrky54 and wrky70, as well as a WRKY70 overexpressor line, to explore the role of these TFs in osmotic stress (polyethylene glycol) responses. Their effect on gene expression was characterized by microarrays and verified by quantitative PCR. Stomatal phenotypes were assessed by water retention and stomatal conductance measurements. The wrky54wrky70 double mutants exhibited clearly enhanced tolerance to osmotic stress. However, gene expression analysis showed reduced induction of osmotic stress-responsive genes in addition to reduced accumulation of the osmoprotectant proline. By contrast, the enhanced tolerance was correlated with improved water retention and enhanced stomatal closure. These findings demonstrate that WRKY70 and WRKY54 co-operate as negative regulators of stomatal closure and, consequently, osmotic stress tolerance in Arabidopsis, suggesting that they have an important role, not only in plant defense, but also in abiotic stress signaling.
منابع مشابه
WRKY70 and its homolog WRKY54 negatively modulate the cell wall-associated defenses to necrotrophic pathogens in Arabidopsis
Previous studies have identified the Arabidopsis thaliana transcription factor WRKY70 as a node of convergence for salicylic acid (SA) and jasmonic acid (JA)-mediated defense signal pathways and, together with its closest homolog WRKY54, as a negative regulator of SA biosynthesis. Here, we demonstrate that WRKY70 together with WRKY54 negatively affect the response of Arabidopsis to the necrotro...
متن کاملWRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana
The plant-specific WRKY transcription factor (TF) family with 74 members in Arabidopsis thaliana appears to be involved in the regulation of various physiological processes including plant defence and senescence. WRKY53 and WRKY70 were previously implicated as positive and negative regulators of senescence, respectively. Here the putative function of other WRKY group III proteins in Arabidopsis...
متن کاملAn Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential
Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic stress tolerance is still unknown. In the present study, we characterized the roles of AtRZFP in response to abiotic stresses. The expression of AtRZFP was...
متن کاملFunctional Analysis of the Pepper Ethylene-Responsive Transcription Factor, CaAIEF1, in Enhanced ABA Sensitivity and Drought Tolerance
Abscisic acid (ABA) is a plant hormone that plays a critical role in the response to environmental stress conditions, especially regulation of the stomatal aperture under water-deficit conditions. The signal transduction occurring during the stress response is initiated by transcription of defense-related genes. Here, we isolated the pepper ethylene-responsive transcription factor CaAIEF1 (Caps...
متن کاملIsolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress
Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis. In the present study...
متن کامل